(i) Using standard series from the List of Formulae (MF26), expand $\frac{\cos 3 x}{4-x}$ as far as the term in $x^3$. Give the coefficients as exact fractions in their simplest form.
[4]
(ii) It is given that the third and fourth terms found in part (i) are equal to the third and fourth terms in the series expansion of $(a+b x)^5$, in ascending powers of $x$, respectively. Find the values of the constants $a$ and $b$.
[4]
(i) $\frac{1}{4}+\frac{1}{16} x-\frac{71}{64} x^2- \frac{71}{256} x^3$
(ii) $b=-0.280(3$ s.f.) $\quad a=-1.12(3$. s.f.)
(i) $(4-x)^{-1} \cos 3 x$
$=4^{-1}\left(1-\frac{1}{4} x\right)^{-1} \cos 3 x$
$\approx \frac{1}{4}\left(1-\left(-\frac{1}{4} x\right)+\frac{-1(-2)}{2 !}\left(-\frac{1}{4} x\right)^2+\frac{-1(-2)(-3)}{3 !}\left(-\frac{1}{4} x\right)^3\right)\left(1-\frac{(3 x)^2}{2 !}\right)$
$=\frac{1}{4}\left(1+\frac{1}{4} x+\frac{1}{16} x^2+\frac{1}{64} x^3\right)\left(1-\frac{9}{2} x^2\right)$
$\approx \frac{1}{4}\left(1-\frac{9}{2} x^2+\frac{1}{4} x-\frac{9}{8} x^3+\frac{1}{16} x^2+\frac{1}{64} x^3\right)$
$=\frac{1}{4}\left(1+\frac{1}{4} x-\frac{71}{16} x^2-\frac{71}{64} x^3\right)$
$=\frac{1}{4}+\frac{1}{16} x-\frac{71}{64} x^2-\frac{71}{256} x^3$
(ii) $(a+b x)^5=a^5+5 a^4 b x+10 a^3 b^2 x^2+10 a^2 b^3 x^3+\ldots b^5 x^5$
$10 a^3 b^2=-\frac{71}{64}$ — (1)
$10 a^2 b^3=-\frac{71}{256} \cdots(2)$ — (2)
(1) $\div(2), \frac{a}{b}=\frac{256}{64}=4$
$\therefore a=4 b$
Substituting into (1)
$10(4 b)^3 b^2 =-\frac{71}{64} $
$640 b^5 =-\frac{71}{64} $
$b^5 =-\frac{71}{40960} $
$b=-0.280(3$ s.f.) $\quad a=-1.12(3$. s.f.)