The planes $\pi_1$ and $\pi_2$ have equations given by
$$
\begin{array}{l}
\pi_1: 4 x+3 y+5 z=7 \text { and } \
\pi_2: \mathbf{r}=2 \mathbf{i}+\mathbf{j}+\lambda(\mathbf{j}+\mathbf{k})+\mu(\mathbf{i}-\mathbf{j}-\mathbf{k}), \text { where } \lambda, \mu \in \mathbb{R} .
\end{array}
$$
(i) Find a vector equation of the line $h$ where $\pi_1$ and $\pi_2$ meet. Verify that point $P$ with position vector $-\mathbf{i}+2 \mathbf{j}+\mathbf{k}$ lies on $l_1$.
[3]
(ii) The line $l_2$ which passes through $P$, lies in $\pi_2$ and is perpendicular to $l_1$. Find a cartesian equation of $l_2$.
[3]
(iii) A point $Q(a, b, c)$ lies on $l_2$ where $a, b$ and $c$ are negative constants. Given that the distance from $Q$ to $\pi_1$ is $3 \sqrt{2}$, find the coordinates of $Q$. Hence or otherwise, find the exact length of projection of $\overrightarrow{Q P}$ on $\pi_1$
[5]
(i) $l_1: \mathbf{r}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right), \lambda \in \mathbb{R}$
(ii) $x+1=y-2=z-1$
(iii) $Q\left(-\frac{7}{2},-\frac{1}{2},-\frac{3}{2}\right)$, $\frac{\sqrt{3}}{2}$
(i) |
Normal of $\pi_2=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \times\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$ or $\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$ using G.C. $\pi_2: \mathbf{r} \cdot\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)=1$ Using G.C. to solve We obtain $l_1: \mathbf{r}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right), \lambda \in \mathbb{R}$ $\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ 1\end{array}\right)$ Since $\lambda=1$ satisfy the above equation, $P(-1,2,1)$ lies on line $l_1$ |
(ii) |
Direction vector of $l_2=\underbrace{\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)}_{\text {normal to } \pi_2} \times \underbrace{\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)}_{\text {direction vector of } l_1}=\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)=2\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ $\mathbf{r}=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \mu \in \mathbb{R}$ |
(iii) |
Position vector of any point on $l_2$ takes the form $\left(\begin{array}{c}-1+\mu \\ 2+\mu \\ 1+\mu\end{array}\right)$ Distance $(-1+\mu, 2+\mu, 1+\mu)$ from $\pi_1$ $=\frac{\mid\left( \begin{array}{c}-1+\mu \\ 2+\mu \\ 1+\mu\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)-7 \mid}{\sqrt{50}}$ $=\frac{|4(-1+\mu)+3(2+\mu)+5(1+\mu)-7|}{\sqrt{50})}=\frac{12|\mu|}{\sqrt{50}}$ When $\frac{12|\mu|}{\sqrt{50}}=3 \sqrt{2}$ Since $a, b$ and $c$ are negative, thus $Q\left(-\frac{7}{2},-\frac{1}{2},-\frac{3}{2}\right)$ Let $x$ be the length of projection of $\overrightarrow{O P}$ on $\pi_1$ Using Pythagoras Theorem $|\overrightarrow{Q P}|=\left|\frac{5}{2}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right|=\frac{5}{2} \sqrt{1^2+1^2+1^2}=\frac{5}{2} \sqrt{3}$ |