The function $\mathrm{f}$ is defined by
$$
\mathrm{f}(x)=\frac{1}{x^2+1}, x \in \mathbb{R}, x \geq k .
$$
(i) State the minimum value of $k$ for which the function $\mathrm{f}^{-1}$ exists.
[1]
For the rest of the question, use the value of $k$ found in part (i).
(ii) Sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ on the same diagram, showing clearly the relationship between them.
[3]
(iii) By finding $\mathrm{fg}(x)$ or otherwise, solve $\mathrm{g}(x)=\mathrm{f}^{-1}\left(\frac{1}{5}\right)$.
[4]
(i) $K = 0$
(ii)
(iii) $x$ = 1
(i) $k$ = 0
(ii)
(ii) $\operatorname{fg}(x)=\frac{1}{\left(\frac{x^2+1}{x}\right)^2+1}=\frac{x^2}{x^4+3 x^2+1}$
$g(x)=\mathrm{f}^{-1}\left(\frac{1}{5}\right)$
$\Rightarrow \operatorname{fg}(x)=\frac{1}{5}$
$\frac{x^2}{x^4+3 x^2+1}=\frac{1}{5}$
$x^4-2 x^2+1=0$
$\left(x^2-1\right)^2=0$
$x^2=1$