The figure below shows a container with an open top. The uniform cross section $A B C L$ of the container is a trapezium with $A B=B C=C D=10 \mathrm{~cm} . A B$ and $C D$ are eacl inclined to the line $B C$ at an acute angle of $\theta$ radians.
The length of the container is $50 \mathrm{~cm}$ and the container is placed on a horizontal table.
(i) Show that the volume $V$ of the container is given by
$V=5000(\sin \theta)(1+\cos \theta) \mathrm{cm}^3$
[2]
Hence using differentiation, find the exact maximum value of $V$, proving that it is a maximum.
[5]
(ii) For the remaining part of the question, $\theta$ is fixed at $\frac{\pi}{4}$.
Water fills the container at a rate of $100 \mathrm{~cm}^3 \mathrm{~s}^{-1}$. At time $t$ seconds, the depth of the water is $h \mathrm{~cm}$. The surface of the water is a rectangle $P Q R S$. When $h=3 \mathrm{~cm}$, find the
(a) the depth of the water, $h$,
[3]
(b) the surface area of the water $P Q R S$.
[2]
(i) Max V = $3750 \sqrt{3} \mathrm{~cm}^3$
(ii)(a)$0.125 \mathrm{~cm} \mathrm{~s}^{-1}$
(ii)(b)$=12.5 \mathrm{~cm}^2 \mathrm{~s}^{-1}$
(i) (a)
$\frac{\mathrm{d}^2 V}{\mathrm{~d} \theta^2}=5000(-4 \cos \theta \sin \theta-\sin \theta)=5000\left(-\frac{3 \sqrt{3}}{2}\right) \approx-12990<0$ when $\theta=\frac{\pi}{3}$ $V$ is a maximum when $\theta=\frac{\pi}{3}$
$\operatorname{Max} V=\left(5000 \frac{\sqrt{3}}{2}\right)\left(1+\frac{1}{2}\right)=\frac{15000 \sqrt{3}}{4}$
Maximum volume is $\frac{15000 \sqrt{3}}{\mathrm{4}}cm^3=3750 \sqrt{3} \mathrm{~cm}^3$.
(ii)(a)
Volume of water $=V=\left[\frac{1}{2} h\left(20+2 h \tan \frac{\pi}{4}\right)\right] 50$
$V=[h(10+h)] 50=500 h+50 h^2$
$\frac{d V}{d h}=500+100 h \text {. }$
When $h=3 \mathrm{~cm}, \frac{d V}{d h}=800$
$\frac{d h}{d t}=\frac{d h}{d D} \times \frac{d V}{d t}=\frac{100}{800} \mathrm{~cm} \mathrm{~s}^{-1}=\frac{1}{8} \mathrm{~cm}^{-t}=0.125 \mathrm{~cm} \mathrm{~s}^{-1}$
(ii)(b)
When the depth of the water is $h \mathrm{~cm}$, area of water surface $y=\left(10+2 h \tan \frac{\pi}{4}\right)(50)=500+100 h$ $\frac{d y}{d t}=100 \frac{d h}{d t}=\frac{d-00}{8} \mathrm{~cm}^2 \mathrm{~s}^{-1}=12.5 \mathrm{~cm}^2 \mathrm{~s}^{-1}$