Question
Answer Key
Worked Solution
9758/2022/P1/Q02
It is given that $\mathrm{f}(x)=\tan ^{-1}(\sqrt{2}+x)$.
(a) Find $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$.
[3]
(b) Hence find the first three terms of the Maclaurin series for $\mathrm{f}(x)$. Give the coefficients correct to 3 significant figures.
[3]
(a) $$ f^{\prime}(x) =\frac{1}{1+(\sqrt{2}+x)^2} $$
$$ f^{\prime \prime}(x) =-\frac{2(\sqrt{2}+x)}{\left(1+(\sqrt{2}+x)^2\right)^2} $$
(b) $f(x)=0.955+0.333 x-0.157 x^2+\ldots$
(a) $f(x)=\tan ^{-1}(\sqrt{2}+x)$
$f^{\prime}(x)=\frac{1}{1+(\sqrt{2}+x)^2}$
$f^{\prime \prime}(x)=-\frac{2(\sqrt{2}+x)}{\left(1+(\sqrt{2}+x)^2\right)^2}$
(b) $f(0)=0.955, f^{\prime}(0)=0.333, f^{\prime \prime}(0)=-0.314269$
Hence, $f(x)=0.955+0.333 x-0.157 x^2+\ldots$ (3 s.f.)