Do not use a calculator in answering this question.
The complex number $z$ is given by
$z=\frac{\left(\cos \left(\frac{1}{16} \pi\right)+i \sin \left(\frac{1}{16} \pi\right)\right)^2}{\cos \left(\frac{1}{8} \pi\right)-i \sin \left(\frac{1}{8} \pi\right)}$.
(a) Find $|z|$ and $\arg (z)$. Hence find the value of $z^2$.
[3]
(b) (i) Show that
$(\cos \theta+i \sin \theta)(1+\cos \theta-i \sin \theta)=1+\cos \theta+i \sin \theta$
[2]
(ii) Hence, or otherwise, find the value of $(1+z)^4+\left(1+z^*\right)^4$.
[2]
(a)$|z|=1, \arg z=\frac{\pi}{4}$, $z^2=i$
(b)(ii) 0
(a) $\cos \left(\frac{\pi}{16}\right)+i \sin \left(\frac{\pi}{16}\right)=e^{i \frac{\pi}{16}}$
$\cos \left(\frac{\pi}{8}\right)-\mathrm{i} \sin \left(\frac{\pi}{8}\right)=\cos \left(-\frac{\pi}{8}\right)+\mathrm{i} \sin \left(-\frac{\pi}{8}\right)=\mathrm{e}^{-\frac{\pi}{8}}$
$\therefore z=\frac{\left(\mathrm{e}^{\left.\mathrm{i} \frac{\pi}{16}\right)^2}\right.}{\mathrm{e}^{-\frac{\pi}{8} \mathrm{i}}}=\frac{\mathrm{e}^{\mathrm{i} \frac{\pi}{8}}}{\mathrm{e}^{-\frac{\pi}{8} \mathrm{i}}}=\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{8}+\frac{\pi}{8}\right)}=\mathrm{e}^{\frac{\pi}{\mathrm{i}}}$
Hence, $|z|=1, \arg z=\frac{\pi}{4}$
$z^2=\left(e^{i \frac{\pi}{4}}\right)^2=e^{i\left(\frac{\pi}{2}\right)}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=0+1 i=i$
(b) (i)$(\cos \theta+\mathrm{i} \sin \theta)(1+\cos \theta-\mathrm{i} \sin \theta)$
$= \mathrm{e}^{\mathrm{i} \theta}(1+\cos (-\theta)+\mathrm{i} \sin (-\theta))$
$= \mathrm{e}^{\mathrm{i} \theta}\left(1+\mathrm{e}^{\mathrm{-i} \theta}\right)$
$= \mathrm{e}^{\mathrm{i} \theta}+1$
$= 1+\cos \theta+\mathrm{i} \sin \theta$
(ii) Let $\theta=\frac{\pi}{4}$ in b(i),
$\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\left(1+\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)=1+\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}$
$\left(\mathrm{e}^{\mathrm{i} \frac{\pi}{4}}\right)\left(1+\mathrm{e}^{-\frac{\pi}{4}i}\right)=1+\mathrm{e}^{\mathrm{i} \frac{\pi}{4}}$ ——(*)
Since $z=\mathrm{e}^{\mathrm{i} \frac{\pi}{4}}$, we have $z^*=\mathrm{e}^{-\frac{\pi}{4} \mathrm{i}}$
$\therefore(*) z\left(1+z^*\right)=1+z$
$\Rightarrow(1+z)^4=z^4\left(1+z^*\right)^4$
$(1+z)^4+\left(1+z^*\right)^4$ = $z^4\left(1+z^*\right)^4$ + $\left(1+z^*\right)^4$
$=\left(1+z^*\right)^4\left(z^4+1\right)$
$=\left(1+z^*\right)^4(-1+1)$
$\left(\because z^4=\left(\mathrm{e}^{i \pi}\right)^4=\mathrm{e}^{\mathrm{i} \pi}=-1\right)$
$=\left(1+z^*\right)^4(0)$
$=0$
This is a pretty tough question. To use the “hence” method, one has to observe that with $\theta$ as $\frac{\pi}{4}$, b(i) reads $z\left(1+z^*\right)=1+z$ with $z$ as $\mathrm{e}^{\mathrm{i}^{\frac{\pi}{4}}}$.