Question
Answer Key
Worked Solution
9758/2019/P2/Q02
(i) Sketch the graph of $y=\frac{2-x}{3 x^{2}+5 x-8}$. Give the equations of the asymptotes and the coordinates of the point(s) where the curve crosses either axis.
[4]
(ii) Solve the inequality $\frac{2-x}{3 x^{2}+5 x-8}>0$.
[1]
(iii) Hence solve the inequality $\frac{x-2}{3 x^{2}+5 x-8}>0$.
[1]
(i)
(ii) $x<-\frac{8}{3}$ or $1<x<2$ (iii) $-\frac{8}{3}<x<1$ or $x>2$
(ii) From the graph,
[A1] $x<-\frac{8}{3}$ or $1<x<2$
(iii) $\frac{x-2}{3 x^2+5 x-8}>0$
$$
\frac{2-x}{3 x^2+5 x-8}<0
$$
From the graph,
$$
-\frac{8}{2}<x<1 \text { or } x>2
$$